在社会科学以及经济、市场调研、管理等研究领域,有时需要处理多个原因多个结果间的复杂关系,或者会碰到不可直接观测的变量(即潜变量),这些都是传统的统计方法不好解决的问题。二十世纪八十年代以来,结构方程分析迅速发展,弥补了传统统计方法的不足,成为多元数据分析的重要工具。
简单而言,与传统的回归分析不同,结构方程分析能同时处理多个因变量,并可以比较评价不同因果关系的理论模型。与传统的探索性因子分析不同,在结构方程模型中,我们可提出一个特定的因子结构,并检验它是否吻合数据。通过结构方程多组分析,我们可了解不同组别 (如不同性别) 内各变量的关系是否保持不变,各因子的均值是否有显着差异。
近三四十年以来,国际上关于教育与心理统计的研究取得了快速的发展,结构方程模型可以说是其中发展较快,应用广泛的多元统计分析技术;在商业领域的品牌研究、顾客满意度研究等方向上也得到了广泛的应用。在我国近十年来,SEM研究方法还在管理学、经济学、医学及社会学研究等领域的应用也得到了快速的发展。
结构方程模型(SEM)是国际管理研究和其他社会科学研究中日益广泛采用的建模技术,每年的美国管理学会年会上都有专题教学和研讨。SEM越来越成为各类高层次学术刊物、高层次管理研究以及社会学和经济学等学科研究领域的必备方法。